

1st & 2nd Variation Formula (for length / energy)

 $\frac{\text{Def}^{2}}{\text{cleffe}}: \text{Given a (piecewise) smooth curve } Y: [a, b] \longrightarrow (M,g)$ $\text{cleffee Length} \qquad L(Y) := \int_{a}^{b} \int g(Y(t), Y(t)) dt \leftarrow (\begin{array}{c} \text{indep. of} \\ \text{reparametrization} \end{array})$ $\text{Energy} \qquad E(Y) := \frac{1}{2} \int_{a}^{b} g(Y(t), Y(t)) dt \leftarrow (\begin{array}{c} \text{clepending on} \\ \text{parametrize} \end{array})$

<u>Remark</u>: By Hölder inequality $L(Y) \leq \sqrt{2} \sqrt{5-a} E(Y)^{\frac{1}{2}}$

and "=" holds (=> $\|\gamma(t)\| = \int g(\gamma(t), \gamma(t)) = const$

=> L & E are the same (up to a multiplicative constant)

for curves parametrized proportional to are Length.

Setup: Consider a 1-parameter family of smooth curves in (M.g.) $\gamma(t,s) := \gamma_s(t) : [a,b] \times (-\epsilon,\epsilon) \longrightarrow M$ smooth

Look at the function of S

$$L(s) := L(Y_s)$$

 $E(s) := E(Y_s)$

Goal: Compute L'(0), L'(0) and E'(0), E'(0)

Notation: write the variation vector field as

$$\bigvee (t) := \frac{\partial Y}{\partial S}(t, 0) \qquad a \text{ vector field}$$

We start with the 1st variation.

1st variation formula: $E'(s) = -\int_{a}^{b} \langle \frac{\partial Y}{\partial s}, \nabla_{2} \frac{\partial Y}{\partial t} \rangle dt + \langle \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial t} \rangle \Big|_{t=a}^{t=b}$ and $L'(S) = \int_{a}^{b} \frac{1}{|\frac{\partial Y}{\partial t}|} \left(\frac{\partial}{\partial t} \langle \frac{\partial Y}{\partial S}, \frac{\partial Y}{\partial t} \rangle - \langle \frac{\partial Y}{\partial S}, \frac{\nabla_{a}}{\partial S}, \frac{\partial Y}{\partial t} \rangle \right) dt$ Proof: $E(s) := E(\chi_s) := \frac{1}{2} \int_a^b \langle \frac{\partial \chi}{\partial t} \rangle dt$ $\Rightarrow E'(s) = \frac{d}{ds} \left(\frac{1}{2} \int_{c}^{b} \langle \frac{\partial t}{\partial t}, \frac{\partial t}{\partial t} \rangle dt \right)$ $= \frac{1}{2} \int_{0}^{0} \frac{\partial}{\partial t} < \frac{\partial}{\partial t} < \frac{\partial}{\partial t} > dt$ $\int_{a}^{b} \langle \nabla_{\underline{2}} \frac{\partial Y}{\partial t}, \frac{\partial Y}{\partial t} \rangle dt$ $\frac{t_{orshim} - t_{ree}}{\sum_{a=1}^{b} \sum_{a=1}^{b} \sum_{a$ $\int_{a}^{b} \left(\frac{\partial}{\partial t} \left\langle \frac{\partial v}{\partial s}, \frac{\partial v}{\partial t} \right\rangle - \left\langle \frac{\partial v}{\partial s}, \frac{\partial v}{\partial s} \right\rangle \right) dt$ $= -\int_{a}^{b} \langle \frac{\partial Y}{\partial s}, \nabla_{2} \frac{\partial Y}{\partial t} \rangle dt + \langle \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial t} \rangle \Big|_{t=0}^{t=0}$ Similarly, L(S) := Jo < 37 37 > dt $\Rightarrow L'(s) = \int_{a}^{b} \frac{1}{\|\frac{2t}{2t}\|} < \nabla_{\frac{2}{2t}} \stackrel{2t}{\Rightarrow}, \frac{2t}{2t} > dt$ $= \int_{a}^{b} \frac{1}{\|\frac{\partial u}{\partial t}\|} \left(\frac{\partial}{\partial t} < \frac{\partial u}{\partial s}, \frac{\partial u}{\partial t} > - < \frac{\partial u}{\partial s}, \nabla_{u} \frac{\partial u}{\partial t} > \right) dt$

If the end points are fixed in the variation: $\gamma_{s}(a) = \gamma_{s}(a) \lambda \gamma_{s}(b) = \gamma_{s}(b)$ A26(-5.6) ìe then V(a) = 0 = V(b) and $E(o) = -\int_{c}^{b} \langle V(t), \nabla_{\frac{2}{2}} \frac{\partial t}{\partial t} \rangle dt$ Ts $L'(\circ) = -\frac{1}{\|\frac{\partial u}{\partial t}\|} \int_{A}^{b} \langle V(t), \nabla_{\frac{\partial u}{\partial t}} \frac{\partial u}{\partial t} \rangle dt$ that || 200 || = const. Cor: crit. pts of E <=> $\nabla_{2} \frac{\partial V}{\partial t} \equiv 0$, ie. V_{0} is geodesic Crit. pts of $L \ll \nabla_{2} \frac{\partial V}{\partial t} \equiv 0$, ie. V_{0} is geodesic that $\left\|\frac{\partial Y}{\partial t}\circ\right\| \equiv const.$ Next, we assume $\frac{1}{50}$ is a geodesic, ie $\nabla_{\frac{3}{54}} = 0$ and compute the 2nd vanistion, with end pts fixed. 2nd vaniction formula: $\mathsf{E}''(\mathbf{o}) = \int_{a}^{b} \left(\langle \nabla_{\underline{\partial}} \mathbf{V}, \nabla_{\underline{\partial}} \mathbf{V} \rangle - \langle \mathsf{R}\left(\frac{\partial \mathbf{Y}_{\mathbf{o}}}{\partial t}, \mathbf{V}\right) \frac{\partial \mathbf{Y}_{\mathbf{o}}}{\partial t}, \mathbf{V} \rangle \right) dt$

$$L''(\mathbf{o}) = \frac{1}{\|\mathbf{v}_{t}^{*}\|} \int_{a}^{b} \left(\langle \nabla_{\mathbf{v}} \nabla_{\mathbf{v}} \nabla_{\mathbf{v}} \nabla_{\mathbf{v}} \nabla_{\mathbf{v}} \nabla_{\mathbf{v}} - \langle R(\frac{\partial Y}{\partial t}, \nabla) \frac{\partial Y}{\partial t}, \nabla \rangle \right) dt$$

Let us give a summary again:

Given a curve $\mathcal{Y}^{(t)}: [a,b] \rightarrow (M^n,g)$, defined $E(\mathcal{Y}) := \frac{1}{2} \int_{a}^{b} g(\mathcal{Y}',\mathcal{Y}') dt$ energy $\leftarrow dep.$ on parametric $L(\mathcal{Y}) := \int_{a}^{b} [g(\mathcal{Y}',\mathcal{Y}') dt]$ length \pounds indep. of parametrization

Consider a 1-parameter variation of curves (with fixed end points).

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
 since the

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow (-\varepsilon,\varepsilon$$

At a critical pt 3. for E, i.e a geodesic. then we compute

$$\frac{Prop:}{E'(o)} = \int_{a}^{b} \langle \nabla_{2} \vee, \nabla_{2} \vee \rangle - \langle R(\frac{\partial Y}{\partial t}, \vee) \frac{\partial Y}{\partial t}, \vee \rangle dt$$

$$\frac{Proof:}{E'(s)} = -\int_{a}^{b} \langle \frac{\partial Y}{\partial s}, \nabla_{2} \frac{\partial Y}{\partial s}, \nabla_{2} \frac{\partial Y}{\partial t} \rangle dt$$

Differentiere w.r.t. S, evaluate at S=0,

$$\begin{split} E'(o) &= \frac{d}{ds}\Big|_{s=o} \left(-\int_{a}^{b} \langle \frac{\partial Y}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial Y}{\partial t} \rangle dt \right) \\ &= \frac{d}{ds}\Big|_{s=o} \left(\int_{a}^{b} \langle \nabla_{\frac{\partial}{\partial t}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle dt \right) \\ \stackrel{\text{functive}}{=} \int_{a}^{b} \langle \nabla_{\frac{\partial}{\partial t}} \frac{\partial Y}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial Y}{\partial s} \rangle + \langle \nabla_{\frac{\partial}{\partial t}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle dt \\ &= \int_{a}^{b} \langle \nabla_{\frac{\partial}{\partial t}} \frac{\partial Y}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial Y}{\partial s} \rangle dt \\ &= \int_{a}^{b} \langle \nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial s}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle dt \\ &+ \int_{a}^{b} \langle \nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial s}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial t} \rangle + \langle R(\frac{\partial Y}{\partial t}, \frac{\partial Y}{\partial s}) \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial t} \rangle dt \\ &= \int_{a}^{b} \langle \nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial s}} \nabla_{\frac{\partial}{\partial s}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial t} \rangle + \langle R(\frac{\partial Y}{\partial t}, \frac{\partial Y}{\partial s}) \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial t} \rangle dt \end{split}$$

Remark: One can also consider <u>closed</u> geodesics M $\gamma : S' = \frac{R}{2\pi Z} \rightarrow M$

without end points.

The 2nd varietion formula has important geometric and topological implications. Note: $E'(0) = \int_{a}^{b} ||\nabla_{\underline{2}} \vee ||^{2} - \langle R(\frac{\partial Y}{\partial t}, \vee) \frac{\partial Y}{\partial t}, \vee \rangle dt$

sectional curreture term

Cor: Suppose (Mⁿ.g) has negative sectional curvature, le K<0.
 THEN, any geodesic X: [a,b] → M is (strictly) locally energy / length minimizing (with end points fixed).
 i.e. any critical pt of E or L must be local minimum.
 E.g.) On a hyperbolic surface (Σ²_{1,2}, g_{hyp}) of K = -1.

For positively armed space, we have the following : Synge Theorem : Suppose (M",g) is a compact, oriented Riem. manifild s.t. (i) n is even (ii) K>0 everywhere THEN, TI(M) = 0, ie. M is simply - connected. Proof: Suppose NOT. ie TI(M) = 0. So , ∃ a (smooth) closed loop &: S' → M which is NOT Contractible to a pt. inside M, ie 0 = [7] E TI (M) (M.S) 2 free hometopy class We want to do a minimization (writ E) with the free hometopy class [8] = 0 ($\hat{\mathbf{y}}$: minimizer in [\mathbf{y}] $\min \{ E(\hat{\gamma}) : \hat{\gamma} \in [\gamma] \} = E(\hat{\gamma})$ (:: M cpt =) existence of minimizer ?)

Note that
$$\hat{\mathbf{y}}$$
 is a non-twivel loop since $[\hat{\mathbf{y}}] = [\hat{\mathbf{y}}] \neq 0$.
AND: $E'(0) = 0$ A $E''(0) \geq 0$ at $\hat{\mathbf{y}}$
for any variation field V along $\hat{\mathbf{y}}$
Write: $\hat{\mathbf{y}} : [0,2\pi]/_{0,\sqrt{2\pi}} \rightarrow M$ Geodesic
GOAL: Find a V st $E''(0) < 0$
Let P: TpM \xrightarrow{i} TpM be the parallel transport
map along $\hat{\mathbf{y}}$ from $\hat{\mathbf{y}}(0)$ to $\hat{\mathbf{y}}(2\pi)$
 $\hat{\mathbf{y}}(\pi)$
 $\hat{\mathbf{y}}(\pi)$