$\oint 1^{\text {st }}$ and $2^{\text {nd }}$ Variation formula for curves

Q: Given (M".g), how does "cuncatures" affect "geometry"?
Recall: The effect of "Gauss councture" on geodesics in surfaces

$$
\underline{K>0}\left(\mathbb{S}^{2}\right) \quad \underline{K=0}\left(\mathbb{R}^{2}\right) \quad \underline{K<0}\left(1 H^{2}\right)
$$

geodesic
"converges"

Q: What about in higher dim'l?
"A": "curvatures" affect the "stability" of geodesics or more general. of minimal submenifolds.
ans $1^{\text {st }} \& 2^{\text {nd }}$ variation for lengtnlevergy functional on cures!

Remark: This is like computing the gradient and hessian of a function $f=\mathbb{R}^{n} \rightarrow \mathbb{R}$ to determine the local min / \max property at a critical point. but we are doing things in an oo-dimensional setting.
$1^{\text {st }} \& 2^{\text {nd }}$ Variation Formula (for length 1 energy)
Def": Given a (piecewise) smooth curve $\gamma:[a, b] \longrightarrow(M, g)$ define Length $L(\gamma):=\int_{a}^{b} \sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t \leftharpoondown\binom{$ indef. of }{ reparametrization }

Energy $E(\gamma):=\frac{1}{2} \int_{a}^{b} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) d t \leftarrow\binom{$ depending $\cdot n}{$ perancetwize }
Remark: By Holder inequality

$$
L(\gamma) \leqslant \sqrt{2} \sqrt{b-a} E(\gamma)^{\frac{1}{2}}
$$

and " $=$ " holds $\Leftrightarrow\left\|\gamma^{\prime}(t)\right\|:=\sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} \equiv$ const
$\Rightarrow L \& E$ are the same (up to a multiplicative constant) for curves parametrized proportional to arc length.

Setup: Consider a 1-parameter family of smooth cures in (M.g)

$$
\gamma(t, s):=\gamma_{s}(t): \overbrace{[a, b]}^{t} \times \overbrace{(-\varepsilon, \varepsilon)}^{s} \rightarrow M \quad \text { smooth }
$$

Look at the function of S

$$
\begin{aligned}
& L(s):=L\left(\gamma_{s}\right) \\
& E(s):=E\left(\gamma_{s}\right)
\end{aligned}
$$

Goal: Compute $L^{\prime}(0), L^{\prime \prime}(0)$ and $E^{\prime}(0), E^{\prime \prime}(0)$
Notation: white the variation vector field as

$$
V(t):=\frac{\partial \gamma}{\partial S}(t, 0)
$$ along γ_{0}

We start with the $1^{\text {st }}$ variation.
lIst variation formula:

$$
E^{\prime}(s)=-\int_{a}^{b}\left\langle\frac{\partial \gamma}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t}\right\rangle d t+\left.\left\langle\frac{\partial \gamma}{\partial s} \cdot \frac{\partial \gamma}{\partial t}\right\rangle\right|_{t=a} ^{t=b}
$$

and $L^{\prime}(s)=\int_{a}^{b} \frac{1}{\left\|\frac{\partial \gamma}{\partial t}\right\|}\left(\frac{\partial}{\partial t}\left\langle\frac{\partial \gamma}{\partial s}, \frac{\partial \gamma}{\partial t}\right\rangle-\left\langle\frac{\partial \gamma}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t}\right\rangle\right) d t$
Proof: $\quad E(s):=E\left(\gamma_{s}\right):=\frac{1}{2} \int_{a}^{b}\left\langle\frac{\partial \gamma}{\partial t} \cdot \frac{\partial \gamma}{\partial t}\right\rangle d t$

$$
\begin{aligned}
\Rightarrow E^{\prime}(s) & =\frac{d}{d s}\left(\frac{1}{2} \int_{a}^{b}\left\langle\frac{\partial \gamma}{\partial t} \cdot \frac{\partial \gamma}{\partial t}\right\rangle d t\right) \\
& =\frac{1}{2} \int_{a}^{b} \frac{\partial}{\partial s}\left\langle\frac{\partial \gamma}{\partial t} \cdot \frac{\partial \gamma}{\partial t}\right\rangle d t
\end{aligned}
$$

$$
\underset{\text { compeible }}{\text { metric }}=\int_{a}^{b}\left\langle\nabla_{\frac{\partial}{\partial S}} \frac{\partial \gamma}{\partial t} \cdot \frac{\partial \gamma}{\partial t}\right\rangle d t
$$

torsion-free
Real: $\left[\frac{\partial}{\partial 5, \partial t}\right]=0^{\circ}=\int_{a}^{b}\left\langle\nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial s}, \frac{\partial \gamma}{\partial t}\right\rangle d t$

$$
\begin{aligned}
\underset{\text { compictince }}{\operatorname{metric}} \rightarrow & =\int_{a}^{b}\left(\frac{\partial}{\partial t}\left\langle\frac{\partial \gamma}{\partial s} \cdot \frac{\partial \gamma}{\partial t}\right\rangle-\left\langle\frac{\partial \gamma}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t}\right\rangle\right) d t \\
& =-\int_{a}^{b}\left\langle\frac{\partial \gamma}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t}\right\rangle d t+\left.\left\langle\frac{\partial \gamma}{\partial s} \cdot \frac{\partial \gamma}{\partial t}\right\rangle\right|_{t=a} ^{t=b}
\end{aligned}
$$

Similarly, $L(S):=\int_{a}^{b} \sqrt{\left\langle\frac{\partial \gamma}{\partial t} \cdot \frac{\partial \gamma}{\partial \tau}\right\rangle} d t$

$$
\begin{aligned}
\Rightarrow L^{\prime}(s) & =\int_{a}^{b} \frac{1}{\left\|\frac{\partial \gamma}{\partial t}\right\|}\left\langle\nabla_{\frac{\partial}{\partial s}} \frac{\partial \gamma}{\partial t} \cdot \frac{\partial \gamma}{\partial t}\right\rangle d t \\
& =\int_{a}^{b} \frac{1}{\left\|\frac{\partial \gamma}{\partial t}\right\|}\left(\frac{\partial}{\partial t}\left\langle\frac{\partial \gamma}{\partial s}, \frac{\partial \gamma}{\partial t}\right\rangle-\left\langle\frac{\partial \gamma}{\partial s} \cdot \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t}\right\rangle\right) d t
\end{aligned}
$$

If the end points are fixed in the variation: ie $\quad \gamma_{s}(a)=\gamma_{0}(a) \& \quad \gamma_{s}(b)=\gamma_{0}(b) \quad \forall s \in(-\varepsilon, \varepsilon)$ then $V(a)=0=V(b)$ and

$$
\begin{aligned}
& E^{\prime}(0)=-\int_{a}^{b}\left\langle V(t), \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma_{0}}{\partial t}\right\rangle d t \\
& L^{\prime}(0)=-\frac{1}{\left\|\frac{\partial \gamma_{0}}{\partial t}\right\|} \int_{a}^{b}\left\langle V(t), \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma_{0}}{\partial t}\right\rangle d t
\end{aligned}
$$

prowded that $\left\|\frac{\partial \gamma_{0}}{\partial t}\right\| \equiv$ const.

Cor: crit. pts of $E \Leftrightarrow \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma_{0}}{\partial t} \equiv 0$. ie. γ_{0} is geodesic crit. pts of $L \Longleftrightarrow \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma_{0}}{\partial t} \equiv 0$. ie. γ_{0} is geodesic prowded

$$
\text { crowded }\left\|\frac{\partial Y_{0}}{\partial t}\right\| \equiv \text { const. }
$$

Next, we assume γ_{0} is a geodesic, ie $\nabla_{\frac{e}{\partial t}} \frac{\partial \gamma_{0}}{\partial t} \equiv 0$ and compute the $2^{\text {nd }}$ variation. with end pts fired.
$2^{\text {nd }}$ variation formula:

$$
\begin{gathered}
E^{\prime \prime}(0)=\int_{a}^{b}\left(\left\langle\nabla_{\frac{\partial}{\partial t}} V, \nabla_{\frac{2}{\partial t}} V\right\rangle-\left\langle R\left(\frac{\partial \gamma_{0}}{\partial t}, V\right) \frac{\partial \gamma_{0}}{\partial t}, V\right\rangle\right) d t \\
L^{\prime \prime}(0)=\frac{1}{\left\|\frac{\partial \gamma_{0}}{\partial t}\right\|} \int_{a}^{b}\left(\left\langle\nabla_{\frac{\partial}{\partial t}} V^{N}, \nabla_{\frac{2}{\partial t}} V^{N}\right\rangle-\left\langle R\left(\frac{\partial \gamma_{0}}{\partial t}, V^{N}\right) \frac{\partial \gamma_{0}}{\partial t}, V^{N}\right\rangle\right) d t
\end{gathered}
$$

Let us give a summary again:

Setting:
Given a curve $\gamma^{(t)}:[a, b] \rightarrow\left(M^{n}, g\right)$, defined

$$
\begin{aligned}
& E(\gamma):=\frac{1}{2} \int_{a}^{b} g\left(\gamma^{\prime}, \gamma^{\prime}\right) d t \\
& L(\gamma):=\int_{a}^{b} \sqrt{g\left(\gamma^{\prime}, \gamma^{\prime}\right)} d t
\end{aligned}
$$

energy t dep. on parameter
length ts indef. of parametrization
Consider a 1-parameter variation of curves (with fixed end points).

$$
\gamma(t, s)=\gamma_{s}(t):[a, b] \times(-\varepsilon, \varepsilon) \longrightarrow M \quad \text { smooth }
$$

an $E\left(\gamma_{s}\right) . L\left(Y_{s}\right)$ are smooth fin of s compute $\left.\frac{d}{d s}\right|_{s=0} E\left(\gamma_{s}\right)$ and $\left.\frac{d^{2}}{d s^{2}}\right|_{s=0} E\left(\gamma_{s}\right)$ variation field
Prop: (1st variation formula for energy)

$$
E^{\prime}(s)=-\int_{a}^{b}\left\langle\frac{\partial \gamma}{\partial s} \cdot \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t}\right\rangle d t
$$

At a cortical pt 8 o for E, ie a geodesic, then we compute
Prop: (2 $2^{\text {nd }}$ variation formula for energy)

$$
E^{\prime \prime}(0)=\int_{a}^{b}\left\langle\nabla_{\frac{\partial}{\partial t}} V, \nabla_{\frac{\partial}{\partial t}} V\right\rangle-\left\langle R\left(\frac{\partial \gamma}{\partial t}, V\right) \frac{\partial \gamma}{\partial t}, V\right\rangle d t
$$

Proof: Recall :

$$
E^{\prime}(s)=-\int_{a}^{b}\left\langle\frac{\partial \gamma}{\partial s}, \nabla \frac{\partial}{\partial t} \frac{\partial \gamma}{\partial t}\right\rangle d t
$$

Differenticte w.r.t. S, evaluate at $S=0$.

$$
\begin{aligned}
& E^{\prime \prime}(0)=\left.\frac{d}{d s}\right|_{s=0}\left(-\int_{a}^{b}\left\langle\frac{\partial \gamma}{\partial s}, \nabla \frac{\partial}{\partial t} \frac{\partial \gamma}{\partial t}\right\rangle d t\right) \\
& =\left.\frac{d}{d s}\right|_{s=0}\left(\int_{a}^{b}\left\langle\nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial s}, \frac{\partial \gamma}{\partial t}\right\rangle d t\right) \\
& \text { metric } \\
& \begin{aligned}
\text { comparite }= & \int_{a}^{b}\left\langle\nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial S} \cdot \nabla_{\frac{\partial}{\partial S}} \frac{\partial \gamma}{\partial t}\right\rangle+\left\langle\nabla_{\frac{\partial}{\partial S}} \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial S} \cdot \frac{\partial \gamma}{\partial t}\right\rangle d t \\
& \int_{a}^{b}\left\langle\nabla_{\partial} \frac{\partial \gamma}{\partial S} \quad \frac{\partial \gamma}{\partial s}\right\rangle \text { torsion free } \frac{\text { swap }}{}
\end{aligned} \\
& =\int_{a}^{b}\left\langle\nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial s} \cdot \nabla_{\frac{\partial}{\partial}} \frac{\partial \gamma}{\partial s}\right\rangle d t \\
& +\int_{a}^{b}\left\langle\nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial s}} \frac{\partial \gamma}{\partial s}, \frac{\partial \gamma}{\partial t}\right\rangle+\left\langle R\left(\frac{\partial \gamma}{\partial t}, \frac{\partial \gamma}{\partial s}\right) \frac{\partial \gamma}{\partial s}, \frac{\partial \gamma}{\partial t}\right\rangle d t \\
& \text { at } s=0 \quad \nu \quad \int_{a}^{b}\left\langle\nabla_{\frac{\partial}{\partial t}} V, \nabla_{\frac{\partial}{\partial t}} V\right\rangle-\left\langle\nabla_{\frac{\partial}{\partial s}}^{\partial s} \frac{\partial \gamma}{\partial s} \cdot \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t}\right\rangle^{=0}{ }^{=0} \gamma_{0} \text { is } \\
& -\left\langle R\left(\frac{\partial \gamma}{\partial t}, V\right) \frac{\partial \gamma}{\partial t}, V\right\rangle d t
\end{aligned}
$$

Remark: One can also consider closed geodesics

$$
\gamma: S^{\prime}=\mathbb{R} / 2 \pi \mathbb{Z} \rightarrow M
$$

without end points.
The $2^{\text {nd }}$ variation formula has important geometric and topological implications.
Note: $E^{\prime \prime}(0)=\int_{a}^{b} \| \underbrace{\left\|\frac{\partial}{\partial t} V\right\|^{2}}_{\geqslant 0}-\underbrace{\left\langle R\left(\frac{\partial \gamma}{\partial t}, V\right) \frac{\partial \gamma}{\partial t}, V\right\rangle}_{\text {section el cincture tern }} d t$

Cor: Suppose ($\left.M^{n}, g\right)$ has negative sectional arcature, ie $k<0$. THEN, any geodesic $\gamma:[a, b] \rightarrow M$ is (strictly) locally. energy / length minimizing (with end points fixed). ie. any cortical pt of E or L must be local minimum.
E.g.) On a hyper bolic surface $\left(\sum_{g_{22}^{\prime}}^{2} g_{\text {hyp }}\right)$ of $K \equiv-1$.

For positively armed space, we have the following:
Synge Theorem : Suppose $\left(M^{n}, g\right)$ is a compact, oriented Rem manifold sst. (i) n is even
(ii) $K>0$ everymere

THEN, $\pi_{1}(M)=0$, ie M is simply-connected.
Proof: Suppose NOT. ie $\pi_{i}(M) \neq 0$.
So. $\exists a$ (smooth) dosed loop $\gamma: S^{\prime} \rightarrow M$ which is NOT Contractible to a pt. inside M. ie $0 \neq[\gamma] \in \pi_{1}(M)$

\uparrow free homutosy cars

We want to do a minimization (wort E) with the free homostopy class $[\gamma] \neq 0$

$$
\min \{E(\tilde{\gamma}): \tilde{\gamma} \in[\gamma]\}=E(\hat{\gamma})
$$

$(\because M$ cpt \Rightarrow existence of monmores $\hat{\gamma})$

Note that $\hat{\gamma}$ is a non-trin'al loop since $[\hat{\gamma}]=[\gamma] \neq 0$.
AND: $E^{\prime}(0)=0$ \& $E^{\prime \prime}(0) \geqslant 0$ at $\hat{\gamma}$ for any variation field V along $\hat{\gamma}$

Write: $\hat{\gamma}:[0,2 \pi]_{0 \sim 2 \pi} \rightarrow M$ geodesic
GOAL: Find a V st $E^{\prime \prime}(0)<0$
Let $P: T_{P} M \xrightarrow{\text { linear }} T_{p} M$ be the parallel transport
$\hat{\gamma}(0)$
$f^{\prime \prime}(2 \pi)$
"
$\hat{\gamma}$ geodesic $\Leftrightarrow \hat{\gamma}^{\prime}$ is parallel along $\hat{\gamma}$

$$
\Rightarrow P\left(\hat{\gamma}^{\prime}(0)\right)=\hat{\gamma}^{\prime}(0)
$$

Since P preserve the inner product, we have

$$
P:\left(\hat{\gamma}^{\prime}(0)\right)^{\perp} \xrightarrow[\cong]{\text { line ap }}\left(\hat{\gamma}^{\prime}(0)\right)^{\perp} \text { ie } P \in S O(n-1)
$$

$\operatorname{dim} M$ even $\Rightarrow\left(\hat{\gamma}^{\prime}(0)\right)^{\perp}$ is odd dimensional

$$
\Rightarrow \exists^{*} w \in\left(\hat{\gamma}^{\prime}(0)\right)^{\perp} \text { st } P(w)=w
$$

Let $V(t)$ be the unique parallel v.f. along $\hat{\gamma}$

$$
\text { st } V(0)=V(2 \pi)=w \quad \nabla_{\frac{\partial}{\partial t}} V \equiv 0
$$

For this V,

