
 

1st and 2nd variation formula for curves

Q Given M g how does curvatures affect geometry

Recall The effect of Gauss curvature on geodesics in surfaces
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Q what about in higherdime

A curvatures affect the stability of geodesics

or more general of minimalsubmanifolds

nos 1st 2nd variation for lengthenergy functional on curves

Remark This is like computing the gradient and

hessian of a function f R IR to determine

the local minimax property at a critical point

but we are doing things in an N dimensional

setting



1st 2nd variation Formula for length energy
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We start with the 1st variation

1st variation formula
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If the end points are fixed in the variation
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2nd variation formula

F cos fab40 V Ozu CRCIF VIII Vs at

cos IS 4o v o vY CRCEE.iizf.ws at
11391



Let us give a summary again

setting
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Remark One can also consider closed geodesics M
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The 2nd variation formula has important geometric and

topological implications
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Cor Suppose M g has negative sectional armature de k co

THEN anygeodesic 8 Ca b M is strictly locally

energy1length minimizing with endpoints fixed

i e any critical pt of E
or L must be local minimum

ES On a hyperbolic surface E Gngp of K E 1
9 2

For positively armed space we have thefollowing

Synge Theorem Suppose M g is a compact oriented

Riera manifold S t Ci n is even

Cii K of everywhere
THEN Ti M O ie M is simply connected

Proof Suppose NOT ie Ti M t 0

So 7 a smooth closed loop 8 S M which is NIT
Contractible to a pt inside M ie Ot CT E Ti M

MTG 1 freehomotopyclass
We want to do a minimisation w r t E

G
8 with the free homotopy class 8 to
m T

minFELT Je 3 ECT
G
G e M opt existence of minimizer



Note that J is a non third loop since I ft to

AND F o O d F co 30 at

for azy variation field
V along J

write 0,21T
o z

M geodesic

GOAL Find a V se F o so

g If 9 A linear
Let P Tpm Tpm be the paralleltransporta

Flo map along from Ico to 8Gt
il p p
8Gt J geodesic J is parallel along 5
P

P Jio Fto

Since P preserve the inner product we have

p Ito
t

Jio ie PE Cn il
I

din M even Ito is odd dimensional
0

WE Fico
t
at Pcw w

Let t be the unique parallel v f awry I
y EO

St V o 2K W z
2T

For this V

o Eco 110 VII CRC II VIII V de

th O K spanlv.Z.FI
contradiction parallel

O
b


